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FOREWORD

This report represents Part IV of a series of reports to be published under

the same title with the following subtitles:

Part I: Background

Part II: Advanced Techniques - The Linear Channel
Part III: Advanced Techniques - The Nonlinear Channel



ABSTRACT

In addition to decoding convolutional codes, the Viterbi algorithm is useful
in a host of other applications, some of which include: maximum likelihood demodu-
lation of new bandwidth efficient modulations such as minimum-shift-keying (MSK)
and continuous phase frequency-shift-keying (CPFSK), demodulation of intersymbol
interference and partial response signals, estimation and smoothing, and simul-
taneous phase synchronization/data detection. Performance bounds for these new
and exciting applications of the Viterbi algorithm can be obtained by a generali-
zation of the transfer function approach originally introducéd by Viterbi for
obtaining bit-error probability bounds on the performance of specific convolutional
codes ovef specific symmetric channels. In Appendix A we examine the use of the
Viterbi algorithm in a general context and present the generalized transfer

function bounds necessary to carry out the applications mentioned above.

The well-known Chernoff and Bhattacharyya bounds can, under certain condition
be made tighter than their commonly quoted standard versions by a factor of one-
half. Using a new approach, Appendix B reviews sufficient conditions under which
these reductions can occur, at the same time making these conditions less restric-

tive but also harder to verify.
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APPENDIX A

Generalized Transfer Function Bounds

1. Introduction

In this appendix we derive performance bounds for the Viterbi algorithm
used in a general estimation/detection context. Special cases include decoding
convolutional codes, demodulation of new bandwidth efficient modulations such as
MSK and CPFSK, demodulation of intersymbol interference signals, estimation and

smoothing, and simultaneous synchronization/data detection.

. Our approach is to generalize the transfer functioﬁ bounds originally used
to evaluate the bit error probability of binary convolutional codes with binary-
input output-symmetric memoryless channels (Ref. 1). We begin by describing the
general estimation/detection problem and the use of the Viterbi algorithm in its
solution. Next "super state" diagrams are defined and generalized transfer
function bounds are derived. Special forms of these state diagrams and transfer

function bounds are then examined.

II. Discrete-Time System Model

We assume the discrete-time system shown in Figure A-1. Here the signal
is described as a general finite state system given b& the output

X, = £(s,,u) (A.2.1)

kY%
and state relation

s (A.2.2)

it T 8BSy

where u, , %, , and Sk have finite alphabets denoted U, X, and S respectively.

k> "k
The sizes of these alphabets are denoted |U|, |X|, and |S|. Note that while |S|
determines the number of states, |U| determines the number of next state transi-
tions from a given state. The signal inputs'{uk} are i.i.d. discrete random

variables with probability function

q(u), uel
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Figure A-1. Discrete-Time System Model

The channel or observation is described by

y, = hGxm) (A.2.3)

where {nk} are i.i.d. random variables independent of the signal inputs {uk}.

Here o, and ¥y can be continuous or discrete valued.

The receiver is described by a Viterbi algorithm which uses a metric

(s 5,) (A.2.4)

for the branches of the trellis diagram. This metric may correspond to many

possible forms such as:

(a)  Maximum Likelihood (ML):

m((s,u),y,) = log, p(ykl(sk,uk))

loge p(yk]xk) (A.2.5a)



(b) Maximum A Posteriori (MAP):

m((s,ow)sy) = log, [p(y, | (55w ))q(u)]

10ge P(yklxk) + log, q(uk) (A.2.5b)

(¢c) Minimum Mean Square Error (MSE):

m((sk,uk),yk) = -(yk - xk)2 (A.2.5¢)

Independent of the metric used by the Viterbi algorithm, we may wish to
evaluate the overall performance using a distortion measure d((ék,ﬁk), (sk,uk)).

This measure may be any nonnegative function such as:

(a) Error Distortion:

d((gk,ﬁk) ’ (Sk’uk)) =

0 i, =u (A.2.6a)

(b) Mean Square Error:

for any a, B 2 0 (A.2.6b)

In the usual convolutional coding application of the Viterbi algorithm the ML
metric is used and the error distortion measure gives the bit error probability
bound. If, on the other hand, we wish to estimate the phase of a signal that is
modeled as a Markov chain, the MAP metric might be used in the Viterbi algorithm
and the mean square error distortion measure would give the resulting mean square
error bound. Although there is a natural relationship between the metric used

by the Viterbi algorithm and the distortion measure used for evaluating perform-
ance, we do not require any connection between these quantities. Indeed, for a

given metric, we shall consider cases where we evaluate performance in terms of
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. two different distortion measures. For example, when a Viterbi algorithm is used
to simultaneously estimate phase and demodulate data, we would be interested in

both the mean square phase error and the bit error probability.

I11. The Viterbi Algorithm

Let us assume that the discrete-time system of Figure A-1 begins at t=0
with initial state g known to the receiver. The receiver then uses the channel
output sequence Yor Yy» Yor e to estimate the particular state sequence

§1, §2, §3, ... or equivalently the particular signal input sequence ﬁO’ Gl’ a,,

... that maximizes the total metric

[o]

> m((a,,1)5y,)
k=0

over all possible sequences {(§k,ﬁk)}.

The Viterbi algorithm is an optimum algorithm for any additive metric and
a finite state signal model. The key to understanding this algorithm is the

trellis diagram description of the signal process. Suppose for example we have

Il
g

N

(A.3.1)

H
w

|ul

The state diagram for the signal process might then be as shown in Figure A-2
where each.of 4 nodes denotes a state and there are 3 next state transitioms.
If we were to give a time-sequence of the possible state transitions starting
with some initial state then we have the corresponding trellis diagram of

Figure A-3. The key point here is that all possible sequences {(§, ,ii, )} are
S Y

represented by paths in the trellis diagram.

Suppose now we have a trellis diagram with M states,

S = {Al’AZ’ ""”’AM} (A.3.2)
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Figure A-2. State Diagram [U]| = 3, |S] = 4
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4 \é
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Figure A-3. Trellis Diagram |U| = 3, |S]| =4

A typical path is sketched in Figure A-4. As the receiver receives the channel
output sequence Y, Y; .- » it can compute a metric value for each branch or
transition from state to state along this path. Thus, in this way the total

metric up to time t = ntl is
n
zm((sk,uk),yk)

=0

for the particular sequence {(sk, uk)} which defines the path.



n-1
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The optimum receiver with respect to this additive metric considers all
paths in the trellis diagram and as t»>» chooses the path which corresponds to the

maximum total metric. The key feature of the Viterbi algorithm is the elimina-

tion of paths without loss in optimality whenever two or more paths merge to the

same state.

In Figure A-5 we show this elimination of paths characteristic of the

Viterbi algorithm. Suppose that two paths {(sk, uk)} and {(§k, ﬁk)} merge at
time t = n+l to state 8 41 = Sp+1 T Ak as shown in Figure A-5. Then the metrics
accumulated up to this point are

n

> ml(sm) )
k=0

" and

n

PRUCERES

k=0

Note that any remaining segment of the two paths starting at state Ak at t = ntl
can be the same for either initial sequence. Since we are only interested in
finding any maximum metric sequence, without any loss of optimality we cah
eliminate one of these two initial path sequencés from further consideration,

namely, the one with the smaller accumulated metric. Thus, for example, if

n - n
PRUCERERERE RS R (4.3.3)
k=0 k=0

'

. AP - ~ n
then we can eliminate the initial path sequence {(sk, uk)}k_o from further
consideration. When more than two paths merge to one state we can eliminate all
but one path from further consideration and keep only the one with the largest

accumulated metric.



Figure A~5. Elimination of Paths



Since there are only a finite number of states

s (A.3.4)

at most M paths are retained by the Viterbi algorithm as the channel output
sequence yus Yps .- is received. This is in contrast to the number of possible
paths IUIn up to time t = n. By eliminating paths that are not maximum metric
each time paths merge in the trellis, the Viterbi algorithm reduces the computa-

tion to roughly M rather than an exponential growth with time.

Another important feature of the Viterbi algorithm is that for all metrics

of interest, there is negligible loss of optimality associated with making

final decisions concerning the maximum metric paths at some fixed lag time as

channel outputs are received. This is illustrated in Figure A-6 where we assume
that the channel output at time t = £ is being processed by the Viterbi algorithm
so that the M surviving paths are computed up to this time. Typically the M
surviving paths, one of which is the true maximum metric path, share common
initial parts. By considering a large enough lag time L, then with high
probability only one initial part remains for all M paths at this lag time

t = 2~L. TFor convolutional codes the choice (Ref. 1)

L 25 log, M (A.3.5)

is large enough to guarantee negligible loss in performance. The Viterbi
algorithm is thus practically realized as a fixed lag estimator of the sequence

{(gk’ ﬁk)} that maximizes the total metric

zm((sk,uk) ,yk)

k=0

as it receives from the channel the observations Yos Yis Yor ---
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Figure A-6.

Fix Lag Decisions
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S 1v. Error Events

The performance of the discrete-time system of Figure A-1 is defined by a

distortion measure
d((sn,un) , (sn,un))

where (sn, un) is the true signal state and input at time t = n while (én, ﬁn)
is the state and input selected by the Viterbi algorithm for the same time.
Without loss in generality, we assume this distortion measure is nonnegative

and in addition,

d((s_,u),(s_»u)) =0 . (A.4.1)

The condition (én, ﬁn) # (sn, un) can only occur when the Viterbi algorithm
eliminates a segment of the true path that includes the state S, When this
happens we have an error event which is characterized by, say, times i and j where

i <n < jand

ék # Sis i<k <j

j-1 j-1
D n((Eai) iy 2 D ml(syu) ) (4.4.2)
k=1 k=1

Figure A-7 illustrates such an error event.

In general for fixed time t = n, there are many possible error events that
can lead to the condition (én, ﬁn) # (Sn’ un). The beginning of an error event
at time i can be anywhere from t = 0 to t = n while the end of an error event
can range from t = ntl to t = «». In the subsequent analysis we shall upper
bound our performance by assuming a steady state condition where t = n>>0 is

assumed so that we allow the initial time of an error event to range from

A-12
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Figure A~-7. Error Event

t = —= to t = n. This will result in an upper bound on performance since in

considering error events we include more of these than are necessary.

We now examine the probability of the occurrence of a particular error
event. Again let {(sk, uk)} be the true signal state and input sequence.

Suppose {(ék, ﬁk)} is any other possible state and input sequence where for

i £n < j we have

A-13
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‘Since the error event only involves subsequences from i to j, we denote these

as

E[i)j] = (Si,si+1’ ----- ,Sj)
5[1i,j1 = (§i;§i+1, ..... ,éj) (A.4.4)

We now bound the probability of this error event denoted by

-1 -1
CPGeli,3] > 35,31 = Pr { D m(ELa)y) 2 ) nl(suu) ) 8.8
k=i k=1
5-1 |
= 2 1) In(ELa) .y - nl(seu) )] 2 083t (A.4.5)
k=1

where the probability is over the channel noise sequence {nk}; i £ k<j. Using
the Chernoff bound (Ref. 2) with parameter 120, and noting that the random

variables {nk} are independent, we have

3-1 |
P(s(5,5] > B[4,3]) < Bjexp [ ) (i) yy) = m(sp o) y) 1] s8]
k=1 -
i-1
- TTelew im0 - ntGieu ¥ [2.8]
k=1
j-1
3 ] CCRED NENRH) | (A.4.6)
k=1
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" where

Dy (G5 s (5 u)) = Blexp V(5,503 - m((som) sy s3]
(A.4.7)

The function DA((gk’ﬁk)’ (sk,uk)) can, in general, be numerically
evaluated and has some well-known special cases. In particular, for the ML
metric of (A.2.5a), it can be shown that X = 1/2 almost always minimizes the

Chernoff bound resulting in the Bhattacharyya bound (Ref. 1)

Dl((ék’ﬁk)’(sk’uk)) = 25 V/E(yklxk)p(yklﬁk)* | (A.4.8)

2 yk

In arriving at (A.4.8), we have made use of the fact that the statistical

expectation in (A.4.7) is taken over the conditional probability distribution

p(Yklxk).

V. Average Distortion

Next we consider the set of all error events beginning at i and ending at j

by defining subsequences

.. A A fafs 31. & = s = . . .
S(i,jlsli,3]1) £ {8(1,3): 847 84> 85 = sy 8 F 50 1<k < 3’}

(A.5.1)
Note that for any subsequence
84,3} ¢ (1,3]sl4,3D)
The distortion at time t=n is

d( (§n9ﬁn) ) (Snaun))
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" Hence the average distortion between the maximum metric sequence {(§k,ﬁk)} and

the actual sequence {(sk uk)} at time t=n is bounded as follows:

E LG8, (s )]sk < Y Y G (e PGl = 80431 [sl4,5D)
© i< j>n S(1,3[s[1,3D)

> > Y a8, (spu)) Blsitgl 343D (AL5.2)
t<n j>n S(1,3|sl1,3D)

The inequality in (A.5.2) comes about because Pr(s[i,j] = 5[i,31|s[1,31), the
probability that &[i,j] has the maximum metric of all error event subsequences,
is less than P(s[i,j]»8[i,j]) which is the probability that 8[i,3] has a greater

metric than only that of the true subsequence s[i,j].

In general we are interested in the above distortion averaged over all
true state subsequences {s[i,j]}. For the special case of convolutional codes
over symmetric channels, the bound is independent of the particular state sub-
sequence s[i,j] and a transfer function bound is easily obtained. In the more
general case of interest here, we should average over all possible true signal
state sequences. In performing this average, we recognize that any true state
subsequence represents a first order Markov chain ‘and thus is characterized by

the probability distribution

q(sl[i,j]) = P(Si)q(ui)q(ui+1) - q(uj_l) (A.5.3)

where p(si) is the steady state probability of state S;-

Next we define the set of subsequence pairs

S(i9j) é {(_é_[j-,j]ss[iaj]): gi = Si’ §J = Sj, §k # Sk; i<k« J} (A.5.4)
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each pair consisting of an error event subsequence and the true state
subsequence. Then averaging (A.5.2) over all subsequences s[i,j] yields*,

B {A0G 800 (opuu, ) = ) a(®) BLA(G6)) (e D sl

Zq<s> Y DY A (eu)) PGslLg] + 8141

8 1sn 3>n S(i,3s[1.1])

= Z Z z a(s{1,31) d((8»8 ), (s »u )) P(s(1,51 + 8[1,3))
1sn 3>n S(1,3) (A.5.5)

 Using (A.5.3) and the bound (A.4.6) in this expression yields the bound

3-1
E (L) ) £ D D D 45 (00 plap) T Tatw) 0y (080 (0w )
isn j>n S(1,3) k=1 (A.5.6)

Since we have steady state conditions, the above bound is the same for all

n; that is, it is independent of n. Because of this invariance to time shifts,
we can express the bound in (A.5.6) in another more compact form. Suppose we

consider two subsequences
8[i,3),s[1,3] ¢ S(34i,31)

As illustrated in Figure A-8, these two subsequences when shifted by L and

denoted

8[i+L,j+L),sli+1L,j+1L]e S({+1L,j+L)

‘

*For simplicity of notation, we shall where convenient drop the dependence of
s on i and j.
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-

L

Figure A-8. Shift by L

are also considered in the average distortion provided L satisfies

i+L<ng<j+lLl

which are analogous to the conditions on i and j just prior to (A.4.3).

note that we have the conditions requisite to being stationary:
q(s[i,3]) = q(s[i + L,5 + L]
and

P(sli,j] - 8[1,3]) = P(s[i +L,j + 1] » 8[i +1L,j + LD

A-18
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We can thus include the distortion due to §[i + L, j + L] and s[i + L, j + L} at

time t=n by considering the distortion

d( (3 »

n—L’un—L)’(Sn—L’un-L

due to
8li,jl,sli,3] € S(4,3)

This means we can replace all shifts of the set S(i,j) to S(i + L, j + L) by

including the additional distortion at time t = n - L.

Thus, for each term in (A.5.6) corresponding to a given i, j, and n, we
can equivalently shift these indices to the left by i, and consider i always
fixed at zero and j replaced by j - i and n likewise replaced by n - i. Hence,
the double sum in (A.5.6) over the region i £ n < j is equivalent to a double
sum in which the first sum runs over fixed j - i =1, 2, 3, ... and the second
sum yuns over 0 < n -~ i < j-1io0or0<n-1i<j-1-1. Then, letting

2 =n - i and for simplicity using j to denote j - i, (A.5.6) becomes
[e] J_l
B LA(G00, (oY £ D D | > a8, (sp0u )| sy
j=1 S(O’j) 2=0
j-1

X ﬂq(uk) DA((ék,ﬁk) > (s 5u))
k=0 (A.5.9)

Note that as stated above, we have also set i = 0 in S(i,j) of (A.5.6). Also,
note that, in this form, the bound shows no dependence on the time n. To

emphasize the independence of n the steady state expected distortion is denoted

a8 E{d((én,an),(sn,un))} (A.5.10)
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One final step is required to obtain a transfer function bound. Applying

the identity

X = _4 z> (A.5.11)
dz
z=1
to the sum on 2 in (A.5.9) results in
j-1
i > a8, (sp0))
Dasa).(sp0u )| = g5
A R R ) dz
2=0
z=1
j-1
- _£ ’ |zd((523u2)’(szsu£)) (A.5.12)
2=0
z=1

Finally, substituting (A.5.12) in (A.5.9) and noting that the product on k in

(A.5.9) is independent of z, we obtain the desired result, namely,

3 5£—T(z) (A.5.13)

z=1

where the transfer function T(z) is given by

o j—]_
1) = ) Y pisp T Eemd Comqwy b (@50, (au))
j=1 S(Os]) l k=0

(A.5.14)
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VI. Evaluation of the Transfer Function

We now examine the problem of evaluating T(z). First suppose the states

are given by

and the signal input alphabet by

cees ALY (A.6.1)

u-= {al,az, e am} (A.6.2)

. 2
We next define "super states' as elements of S = S x S where

z _
ST = {8,,8,,

cees 6M2} (A.6.3)

Also define the "super signal input" alphabet U2 = U x U, where

2 _
u - {OLI,OLZ, s s 0 ey amz} (A-6.4)
Then at time t = k we denote "superstates"
S, = (s,,8,) ¢ S° (A.6.5)
k= (858) ¢ (A.6.
and super inputs
U, = (u.b) el (4.6.6)
K = (0 e .6.

Next, the super states 32 are split into two disjoint subsets, namely

2
SA = {61962!

A-21
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which contains the M equal-component super states

62 = (AQ’AQ); £=1.2, ..., M (A.6.8)

and

2

g

= {6M+1’6M+2’ N GMZ} (A.6.9)

which contains the unequal-component super states.

With this definition, note that in accordance with

$0,3) = {(s[0,31,8[0,3]): 5, = Sge85 = 8538 # 55 0 <k < j}
= (510,31 5,5, € 8,5, S, €S2 0 <k < 3} : (A.6.10
~ ’ O!j s—A’ -k B, J A.. )
where
800,31 = (5458;, ....,sj) (A.6.11)

Next, we use some shorthand notation where the state equations,

~ ~

Sir1 = 88Ty
K+l = 8(Sou) (A.6.12)
are expressed as

k1 = GG U

and we define

>

p(SO) p(so)

d(8,,U,) 2 A8, 5 (s50))

q(U) = q(y)
D, (8,,U,) 2 Dy ((3,,%) 5 (s,5m)) (A.6.13)
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Then the transfer function (T(z) of (A.5.14) can be rewritten as

- 32 d(s, .0
T(z) = z z p(So)ﬂz a(U,)D, (5,,U,) (A.6.14)
j=1 §(0,3) k=0

Note, that in the above form, T(z) can be interpreted as a transfer func-
tion for the super state diagram of Figure A-9. Here T(z) is the sum of all paths
in Figure A-9 each starting with an initial state belonging to Si and terminating
in a final state also belonging to Si while all intermediate states are those
belonging to S;.* The transfer function label of the branch from state 6i to

state §, is called a.. where
J 1]

alJ
{65
® ®

d(Gi,U) 2
z q(U)Dx(Gi,U); if Uell“exists such that Gj = G(Gi,U)

ij
0; if not (A.6.15)

The transfer function can be expressed in matrix form by defining ti(z);
i =M1, M¥2, ..., M2 as the transfer function from all initial states to the

single intermediate state Gj}Lsg. Defining the (MZ—M) X (M2—M) matrix

*For j = 1, there are no intermediate states.
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Figure A-9. Super State Diagram
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and the vectors

>

AM1,MH1

OMH1 M2

G

24 M+l

4y M+2

aM+2.,M

A+, 1

qM+2,1

a2 g

A-25

(A.6.16)

(A.6.17)



then intermediate state transfer function vector

p— »—1
Eygp (2
tyy (2)
t(z) =
tM2(z) ' (A.6.
| —
satisfies
M
t(z) = A t(z) + Zp(éi)gi (A.6.
i=1
or
M
‘ -1
@ = @-0T D peb (a.6.
i=1
where I is the (MZ-M) X (M2—M) identity matrix. The total transfer function
given by
M M T M
T -1 (A.6
T = .t = 22 , - 25 ) .6.
@ = Det@ = e @-n  Daesp,
j=1 j=1 i=1
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where the superscript T denotes transpose.

We next consider taking the derivative of T(z) where we denote

¢! =_4d ¢
= dz 1
' = d
by =4 b, (A.6.22)
and
A' =S A (A.6.23)
A T3z a .0.

The understanding here is that the derivative is taken term by term in each

vector and matrix. Also using the identify

I=0Q- A)'l(_l_ - A) ' (A.6.24)
we have
0-2(a-mta- )
=1 - A)"l(— a%é) + (I - A)(a%(l - A)'l) ~ (A.6.25)
or
La-mt-a-nlara-nT? (A.6.26)
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Thus, using (A.6.26)

M M
T _ -1 '
+ z c; I-4 ZP(Gi)p_i
\3=1 i=1

T

J

M
c. )] @- A)'IA' T - A)'l z p(8)b,} (A.6.27)
1 i=1

-+
.[glq D

]

which enables us to evaluate the bound on E'given in (A.5.13). This evaluation

is limited only by the ability to evaluate

(l-g._)'l =I1+A+ 2+_@3+ ..... (A.6.28)

[

The complexity of computing ék is determined by the number of nonzero elements
in A. Roughly 215 nonzero elements can be handled by a large general purpose

computer.

Finally, we note that in most cases of interest the bound given above can

be reduced by a factor of one half. That is, (A.5.13) can be improved to

dT(z) , (A.6.29)

General sufficient conditions for this factor of one half are presented in

Appendix B.
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VII. Special Cases and Examples

There are special cases where symmetry conditions may allow us to reduce
the number of "super states" which are necessary for the evaluation of transfer

functions.

A, Sequence Independence

Recall that the average distortion given the transmitted sequence s is
bounded by (A.5.2). In some cases this bound is independent of the actual
transmitted signal state sequence s. For such cases, we may pick a convenient

sequence s° such as one whose elements are all identical, e.g.,

= A for all k (A.7.1)

assuming this is an allowed sequence. Then, for any sequence s we evaluate the
bound on average distortion using s° as the assumed sequence. Thus, under this

assumption, (A.5.2) becomes

E {d((s_,0 ), (s_,u))|s}

< Z d((8 ,4),(4,5u;)) P(s°[i,31-8[1,3]) (A.7.2)
isn-j2n S(i,j|s°[i,31)

where

u =y for all k (A.7.3)

is assumed to yield the sequence s°.

Next using the bound of (A.4.6), namely,
j=1

P(°[5,31815,3D) s | | 2y ((aea),(apu), (A.7.4)
k=1
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equality (A.5.3) with all probabilities equal to unity, and the shift invariance

property, we have from (A.5.9) that

E {d((s_»8),(s_,u))|s}

-1 -1

z z [z d((gl’ﬁl)’(Al’ul)):lT‘- D)\((gk’ﬁk)’(Al’ul))
i=1 $(0,3|s°[0,3]) £=0 k=0

I

d
3z To(®)

(A.7.5)

z=1

j-1 o
® d((& .4, ),(4, ,u))
k’ 'k 1’71 - o
Z DA((Sk’uk)’(Al’ul))

3=1 8(0,3|s°[0,3]) k=0
(A.7.6)

To evaluate the bound of (A.7.5) we need to find the transfer function
To(z). Here, we define state transitions from state a; to state aj as (see

(A.6.15)

zd((Ai’u)’(él’ul)) DA((Ai’u)’(AI’ul)); if ue Uexists

such that

a,. = =
1] Aj g(Ai su)

0; if not (A.7.7)
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=

2,M

" Then define the (M-1) x (M-1) matrix

3,2

3,3

3,M

and the M-1 dimensional vectors

lo*
]

1,2

1,3

1,M

A-31
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M,3

(A.7.8)
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and

LaM,l (A.7.10)

By analogy with (A.6.21) the transfer function To(z) is then given by

Ty(z) =’ (@ -m7 (A.7.11)

and its derivative becomes

dTO(z) 1

A )
dz b

=) -mnTp+ @ -

+fa-mara-n" (A.7.12)

where the primes again denote differentiation with respect to z., The final bound
has the form given by (A.5.13) with T(z) replaced by To(z). Note that here the
evaluation of the bound involves only the M states defined by the original signal

model whereas in the most general case of the previous section we considered M

"super states."

The most common class of examples where the bound in (A.5.2) is independent
of the actual signal sequence is that corresponding to convolutional codes trans-

mitted over symmetric channels (Ref. 1). For example, consider the binary
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: . 2 .
convolutional code shown in Figure A-10a. This is a rate r = 3 constraint

length K = 2 code with input alphabet

u = {(00),(01),(10),(11)} (A.7.13)

where the first bit of each pair enters the top unit delay and the second bit

enters the bottom unit delay. The output alphabet is

X = {(000),(001),(010),(011),(100),(101),(110),(111)} (A.7.14)

and the state is given by s, = Y1 for all n, so that

S = U = {A19A23A3,A4} . (A.7.15)

Next suppose we have a symmetric channel such as that created by a BPSK
modulated signal with additive white Gaussian noise and soft decision decoding
(Ref. 1). Here the channel has input alphabet T = {0,1}, output alphabet

W = (==,»), and the channel conditional probability density function p(w|i)

for each iel, weW given by
2E 2
. 1 1 S
p(w|i = 0) exp{ -zl - \/ 5~
NyL 0

p(wli =1) = 1 exp - L(J + fsi )2} (A.7.16)
JE; 2 \/ NO

where ES/N0 is the BPSK pulse energy-to-noise ratio. In our example the

convolutional code output consists of three binary symbols so that

X=1 (A.7.17)

and

y =W (A.7.18)




it

- +

+

-+

+ A
~
o _p 1
'|) | 90'[010]
| _f oo
91‘[110]

a) Encoder

b) State Diagram - Qutputs

Figure A-10. K =2, r =-% Convolutional Code
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Let us assume a maximum likelihood metric as in (A.2.5a) where now

3

p(y, %) = ﬂ pCw |1, ) (A.7.19)
=1

with yke!land xkaX. Letting §k denote the binary component vector X with

components coverted to *1 by the rule

01
1> -1 | (A.7.20)
then
3
p(y, %) = ﬂ pCu [T, ) (A.7.21)
n=1

where I is the *1 representation of i according to the rule in (A.7.20) and from

" (A.7.16)

' 1 1 2Es ’
p(wknllkn) = _2—.,; exp - f(wkn - i) No (A.7.22)

Substituting (A.7.22) into (A.7.21) and taking the matural logarithm of the

result in accordance with (A.2.5a) gives

3
3E
_ -3/2 1 2 s
m((sk,uk),yk) = loge (2w ) - 2 :E: Wi T No

n=1

o [E, 2 -
+ *‘I;]-O- Zwknlkn (A.7.23)
n=1
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Since the first three terms of (A.7.23) are independent of X, > we can

equivalently consider the metric

3

m((sk,uk),yk) = 25 Wknikn 2 (yk,ik) (A.7.24)
n=1

where (*,*) denotes the usual inmer product of real vectors of dimension three.

In this case, the Bhattacharyya bound of (A.4.8) becomes*

: 3
?l ((§k,ﬁk),(sk,uk)) =’]-I v/ﬁ\/@(wkntzkn) p(Wknlikn) dw,  (A.7.25)
2 n=1

Substituting (A.7.22) into (A.7.24), we get

3 ) - =
2E i +1 2E
: 1 1 2 s kn kn s
D, ((s,,u ),(s )) = f exp{- =| w -~ 2\/—=w (-——-—-——-— + —= 1 rdw
% k*Yk k'uk‘ ” e 2§ Ykn V N, “kn 2 N, kn

n=] -

]
(]
%

e~}

]
[}
>
o
—— —— et —
t
oz‘mm
M
=
t
——
xﬁ-‘-l
=]
Ny +
g:-sn
s
—————d

(A.7.26)

*Note, the components of y, are now continuous random variables and thus the
sum over yy in (A.4.8) is replaced by integrations over each component.
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Letting dH(xk,ik) denote the Hamming distance between Xy and §k or equivalently

the number of components of X and Ek which disagree, then

3 - =
1 1
4y (5% =_z [1 - —kle—k—“] (A.7.27)

n=1

Substuting (A.7.26) into (A.7.25) gives the desired result, namely,

(A.7.28)

E
Pl ((gk’ﬁk)’(sk’uk)) = exp{ - ﬁi-dﬁ(xk,ik)} !
2

where, furthermore, ES = 2Eb/3 with E. the energy per data bit. Alternately,

b
letting

Eb
ﬁa)] (A.7.29)

we can rewrite (A.7.28) as

d, (%, ,% ) :
Dl ((ékaﬁk),(sk’uk)) =D H7RTk ' (A.7.30)
2

For a coded system we are typically interested in the average bit error
probability. Suppose we consider the distortion measure d((§k,ﬁk), (sk,uk))
that depends only on ﬁk and Uy according to the following table:
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Table A-1

By
d((ék,ﬁk),(sk,uk)) 00 01 10 11
00 0 8 o ot+B
01 B .0 o+B Q.
K 10 o o--R 0 B
11 a+B a B 0

for any o > 0, B > 0. By choosing a =1, 8 = 0, the entries in the above table
would be one whenever the first bit in & and u, disagree, and zero whenever
they agree. Thus, the average distortion would give the average bit error
probability for input bits entering the convolutional encoder at the upper unit
delay in Fig. A-10a. Conversely, a = 0, § = 1 results in table entries which
are one whenever the second bit in ﬁk and uy disagree and zero whenever they
agree. Thus, the average distortion would now give the average bit error

probability of the input bits entering the lower unit delay of the encoder.

Finally, a = 8 = %—yields the total average bit error probability.

Figure A-11 illustrates the modified state diagram with the initial and
final states given by state Al and intermediate states A2, A3, and A4' The
branch labels between states are determined by substituting (A.7.30) and the
entries of Table A-1 into (A.7.7). By observation of Fig. A-11l, we can
directly obtain the transition matrix among nonzero states which is given by

3.8

DzB D7z DzB

DZZOH-B ZOL+B D22a+8 (A.7.31)
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Figure A-11, Transfer Function State Diagram

for K =3, r =-§-Code
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and vectors

8 D2 zoa+BJ

Here the average distortion is given by#*

l_dTO(z)

2 dz

(2]
IA

where for z = 1

and

RD
abD

(a+B)D2

gD

oD

| (o+B)

3

gD

oD

o+

2
D.J

gD
oD

(a+8)D2

*The factor of 1/2 is used here as discussed in Appendix B.
this case ¢' = 0 which eliminates the first term of (A.7.12).
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(A.7.33)

(A.7.34)

(A.7.35)

Also note that for



In Figure A-12 we show this bound on d, for the two cases o« = 1, 8 = 0 and

o =0, B =1 corresponding, fespectively, to the bit error probabilities of the
two data bit sequences entering the upper and lower unit delays of the convo-
lutional encoder. Note that for Eb/NO = 7 there is a factor of 10 difference in

the bit error probabilities of the two data bit sequences entering the encoder.

B. Difference Sequences

In some examples the conditional average distortion bound given in (A.5.2)
may depend only on differences, e.g. én - s and ﬁn - u for all n. This allows
us to define "difference states'" rather than general "super states" in evaluating
the transfer function bounds on the average distortion. Typically the number of

difference states is much smaller than the number of "super states.”

Uncoded amplitude modulated signals transmitted over a linear channel with
intersymbol interference and additive white Gaussian noise is a common example
where only differences are important. For example, with uncoded BPSK modulation,
we typically have the equal probable data bits* unell= {-1, 1} which after inter-

symbol interference results in an equivalent discrete-time signal

v .
x, = ZS hiuk-i (A.7.36)
i=0

where v is the assumed finite memory of the intersymbol interference and
ho, hl’ e s hv are expressed in terms of the BPSK pulse rate and channel filter

causing the intersymbol interference. The state is defined as the vector

*Here it is convenient to use {-1, 1} rather than {0, 1}. For simplicity,
however, we shall omit the overbar notation on xk.
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Py, BIT ERROR PROBABILITY

Eb/NO (d8B)

Figure A-12. Coded Bit Error Probabilities
for K =3, r =-§-Code
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and the filter vector is given by

" Then, the signal has the form

X = (h,sk) + houk

A-43

(A.7.37)

(A.7.38)

(A.7.39)



where (-,-) is again used to denote the inmer product of vectors. The state
Si41 is obtained from shifting state Sy and adding component Uy i.e., replacing
k by k + 1 in (A.7.37).

The channel output is given by

=x +n ) (A.7.40)

where {nk} is an i.i.d. sequence of zero mean Gaussian random variables which
are normalized to have unit variance. We use the natural maximum likelihood
metric of (A.7.24) which results in the Chernoff bound becoming the Bhattacharyya

bound

Dl((ék,ﬁk),(sk,uk)) = f\/p(yk]xk)p(yklik) dy,
2

exp [—-%(xk - ik)zJ

\/% exp [— %(yk - Xk)z]eXP [- %(yk - ik)z] dyk

2

- exp{— Fl(hys, - &) + ho(u - 8] (A.7.41)

We are typically interested in bit error probabilities so we use the

error distortion measure of (A.2.6a) which can be rewritten in the form

p—
td
[ 3]

d((gk,ﬁk) ’(Sk,uk)) = Z(uk - uk) =

A # i, (A.7.42)
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Note that here both the metric and the Chernoff bound depend only on the differ-

ences u, - ﬁk and Sy~ §k. We now examine the transfer function T(z) given by

(A.6.14), which upon substitution of (A.7.41) and (A.7.42) becomes

j=1 1 2
(z) = Z S s )ﬂz" M q(uk> exp | - £l(hys, = 8 + hy(yy - )]
j=1 8(0,3) k=0
(A.7.43)

To evaluate this, we now take advantage of the fact that only differences

occur by defining
€ =iy - ) ' (A.7.44)
k 2k k e
which takes on values {-1, 0, 1} and the difference state

(sk - §k) (A.7.45)

Then, the difference state 8,4, Wwould be obtained by shifting §, and adding

component € Here there are 2" possible values of the state s, while there

k
are 3’ possible values of the difference state Gk. Recall that the 'super

1"

states,” consisting of pairs (sk,ék), would have 4" possible values.

With the difference formulation and the fact that equally probable bits

means

=1 '
au) =5 | (A.7.46)
we have from (A.7.43) that
w =1 2
HORS NN ICON A E (%) exo {- FL(h,6) + hoe, 12
j=1 S(0,3) k=0 (A.7.47)
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Recall that the sum.over S(0,j) consists of all pairs s[0,j] and 8[0,3] such

that

and

§k # 813 k=1,2, vues,y j-1

or, equivalently, a difference sequence

6[O’j] = (60961, » e 8 u y 6j)

where
— -
0
0
60=6j=g=
0
and
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(A.7.50)
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Note that there are 2V choices of initial conditions §0 = 8, and thus
p(so) = I/Zv whereas there 1is only one choice of initial condition for 60.
Also note that the error sequence {ek} does not uniquely specify the pair

sequence (uk,ﬁk) since

i
—
g
=
[}
o
=3

L]
P
[t

1]

I
—

ek =0 when or

u =1, 4 =1 ' (A,7.53)

Thus, if we replace the sum over S(0,j) by the sum over all difference state

sequences

D(0,j) =46[0,51: 6, =0,8, = 996k # 0k =1,2, ...., j-1 (A.7.54)

1
75 oe =1
1
c(sk)A— 75 & = -1
1; ek =0 - (A.7.55)
or
2
1 ek
c(ek) = (5) (A.7.56)

Note that (A.7.55) takes into account the fact that u, can be +1 or -1 when
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Thus the transfer function of (A.7.47) takes on the new form
o0 j"l 512( 2
1" z i
T(z) = z z (7) exp {" —f[(h’ak) + hoek] (A.7.57)
i=1 P(0,3) k=0
To evaluate the transfer function T(z), let the set of difference states be

D= {dy»d;sdys weees dp (A.7.58)

where L = 3v. Next define (see (A.6.15))

2
(E)E exp ¢ - l[(h d.) +h t3]2 : if d. can be reézhed
2} P T2ty o’ ¢ i

from di with some G

a,, =
1]
0; if not (A.7.59)
and
a, ay, A ]
212 322 . . ar_1,2
é: . - .
4,L-1 4,1-1 . . y y aL-l,L—{J
L
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[
job]

01 10

(A.7.60)

a0,1L-1 LaL-l’O_j

Then (see (A.7.11))

T(z) = ¢ (I - A b (A.7.61)

Consider the example where v = 1 so that we only have hO and h1 and the

difference states, 6k = €,_1» are

d0 =0
d1 =1
d2 = -1 ' (A.7.62)

Figure A-13a shows the difference state diagram with € as branch values while
Figure A-13b shows the transfer function difference state diagram with aij as

branch values. Thus
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a=Z%e

b =-;-e'% (hg+ by)*
¢ =§ o7 (g = hy)?
L

b) Transfer Function Difference State Diagram

b+c¢

a Q 2d
O————0O
¢) Reduced Tran;Fer Function Difference State Diagram

Figure A-13. Example with v =1
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b c~
A=
c b
J
a Fd
b=| [c-
a d (A.7.63)
L

Substituting (A.7.63) into (A.7.61), we then have

Z exp [—%(hé + hf)
2ad _

T(z) = = S G
1 - (b +c)
1 -z exp [—l((z) + hz)]cosh (hOhl) (A.7.64)

and the bit error probability bound

1 dT(z)
Py 2374z
z=1
1( 2 . .2
exp| - sth, +h )}
1 . [ 2\0 1
2 1(2 . .2 2
1 - exp [-i(ho + hl) cosh (hyh,) (A.7.65)

We can compare this result with the no intersymbol interference case.

This corresponds to conventional BPSK with bit error probability*

* _ 2 2) 1 1.2 .2
P, = Q( /ne + 07 ) <5 exp [— z(ho + hl)] (A.7.66)

*Q(x) =

exp (—y /2)dy is the usual error probability integral. Also

\/__

we have normalized both cases to have the same energy.
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where this bound on Q(x) is within 0.5 dB for P, < 10_2. For the special case

2

Y e

0 N,
h

hy = 9 (A.7.67)
N2

*
Figure A-14 illustrates the bound on Pb given by (A.7.65) and the bound on Pb

given by (A.7.66). For large values of Eb/NO the difference is asymptotically

equal to zero.

Another possible comparison is with a conventional single sample data
detector which makes no use of the energy in the intersymbol interference to
improve performance. Here, the average bit error probability is simply given

by

B = 1oth. + h) + 1oh, - b))
b 2 0 1 2 0 1
1 1 2 1 1 2
Szexp [— E(h0+h1) ]+Zexp [— -z-(ho—hl)]
1 102, .2 .
= 5 exp [—-E(ho + hl)] cosh (hOhl) (A.7.68)

This result is also illustrated in Figure A-14. Notice how the Viterbi

algorithm has been successful in combating intersymbol interference.

Several other examples of intersymbol interference channels and their
analysis are given in Ref. 1, There, continuous-time signals are reduced to
equivalent discrete-time signals and the corresponding transfer function bounds
as in (A.7.57) are derived. 1In these examples one can see further that for a
difference state sequence as in (A.7.50) with corresponding error sequence

€ps Eps +ces Ej_l there is an equivalent difference state sequence
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Pb » BIT ERROR PROBABILITY

1.0

107!
IS| WITHOUT
VITERBI ALGORITHM
1072 |—
" IS1 WITH
VITERBI ALGORITHM
X 2,
o = , by
-3
10—
B NO 181
-4
10—
1072 ' L L1
0o 1 2 3 4 5 & 7 8 9 10 11 12

Figure

A-14.

Eb/ Ny (dB)

Intersymbol Interference Example
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_G[OSj] = (—60: —613 ey —5j) (Ao7-69)

with corresponding error sequence ~€g» TEpr e —ej_l. Both of these have

identical transfer function values

j-1 ez

ﬂ (‘;‘) k exp { —%[(h,ék) + hOEk:lz}

k=0

This means that all nonzero difference states can be merged with their opposite
sign state resulting in a reduced state diagram consisting of 3v/2 nonzero

states (see Figure A-13c for our example).

Next we shall consider an example where the number of states necessary to

compute the transfer function bound is actually less than the number of signal

states |S|.

C. Absolute Difference Sequences

We examine here another problem where "absolute difference states" are
used in the transfer function bound. In particular, we consider a phase esti-

mation problem where we quantize the phase space (0, 27) into M values

S = {AI’ AZ’ ceens AM} (A.7.70)
where
Ak =kA; k=1,2, ...., M
_ 2t |
A M (A.7.71)
The phase sequence is Sg» Sy Sgs ess which we model as
Sia] = sk@uk; k =0,1,2, .... (A.7.72)
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where the initial phase random variable N has the probability

p(so) = -rlz; all SOES (A.7.73)

and {uk} are i.i.d. random variables with common probability.

q(u) =

0; otherwise (A.7.74)

Here the symbol @ denotes modulo 27 addition. Thus, at any point in the
sequence, the phase may either remain the same or take on one of its two

adjacent values all with equal probability of occurrence.

The actual signal is assumed to be the sine and cosine of the phase, i.e.,

cos (sk @ uk) cos s, )

sin (sk @ uk) sin S+l (A.7.75)

The

&=

Figure A-15 shows the state diagram for this signal for M = 8 and A =

branch values are the signal inputs uel.

Suppose the channel adds zero mean independent Gaussian random variables

to each component resulting in the channel output vector

. v, = a xk+Nk (A.7.76)
where
ZES
a = "“I\g (A.7.77)
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Figure A-15.

Phase Model For M = 8
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and

Ny (A.7.78)

with o, and n, having unit variance. Also assume that the receiver uses the

maximum likelihood metric analogous to (A.7.24) namely
m((8.0).3, ) = (%) | (.7.79)

and the squared error distortion measure,

. . N2 2)
a((2o8) 5 (syp0)) = min {(Sk+1®sk+1) Bry1 Ospyy) | (A.7.80)

where O denotes the difference modulo 2w. Note that this distortion depends

only on the absolute difference between sk+1 and §k+1 (modulo 27) which has

values in

}s Ay = 0, M even (A.7.81)

oty - AM/IZ

Furthermore let Gn be defined as this absolute difference, namely,

ck+i - ﬁ((gk,ﬁk) ,(sk,uk)) (A.7.82)

which as stated above has values only in D.

Substituting (A.7.75) into (A.7.76), then the metric of (A.7.79) is

evaluated as

(yk,ik) = a cos (sk+1 - §k+1) + ﬁk (A.7.83)

A-57



where n, A (Nk,xk) =mn cos & + n, sin 8141 is a zero mean unit variance

Gaussian random variable. Note that

cos (8y,) = Byyy) = o8 (53, O 8pyy)
= cos (847 O spyy)

= cos [v/é((ék,ﬁk),(sk,uk))]

= cos 6k+1 (A.7.84)

Hence, both the distortion measure and the metric depend only on the absolute

differences {Gk}.

Since we use a maximum likelihood metric the Chernoff bound results in

the Bhattacharyya bound

Dl((ék,ﬁk),(sk,uk)) = //p(ylxk)p(ylik)dy
2

1 2
exp i- 5| |ax, - a%k, ||
8 k k

2 2 2
= exp {— §§ [(cos Sp41 ~ cos Sk) + (sin Spa1 " sin sk) ]

' 2
exp {— EZ [1 - cos (sk+1 - §k+1)]}

]

]

2
exp %— EZ-[l - cos 6k+1]} (A.7.85)
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Thus in addition to the metric, the Chernoff bound also depends only on the
absolute differences {Gk}. As in the previous example, define an error term

for each k by*

=u e {-2A,-4,0,0,24} (A.7.86)

S S
Then, an absolute difference process can be given by

([ck +e. 58

flsk + e
\

T - A sy 8, =1 - A, €

#m-A, m, all ¢

k k

1 8 =7 - A, €1 # 2A

k| k

k+1

24

\ﬂ - ]akl 3§ =, all e (A.7.87)

We now consider a transfer function bound for this problem. The general
transfer function bound T(z) given by (A.6.14) which when using (A.7.82) and
(A.7.85), i.e.,

62

d((gk,ﬁk),(sk,uk))nl((gk’ﬁk)’(sk’uk)) _ Sk

e - St - e )

(A.7.88)

has the form

T(z) = ZZ 2{ p(s )'7—[ k+ q(u ) exp {--§~[1 - cos 6k+1] (A.7.89)
j=1 $(0,3)

*
Note (A.7.86) is analogous to (A.7.44) except for a factor of two.
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Recall $(0,j) is the set of sequences &[0,j] and s{0,j] that diverge at the
initial node and remerge j branches later in the trellis diagram. This corres-
ponds to a particular absolute difference state sequence as in (A.7.50) where

now

60 = Gj = 0; Gk #0, k=1,2, ...., j-1 (A.7.90)

We replace the sum over S$(0,j) by the sum over all absolute different state
sequences as in (A.7.54). Next, we replace p(so) by one and q(uk) by a function
c(ek) whose definition we shall now examine by considering the values of U

associated with each wvalue of € as follows:

U, = 0o, ﬁk =0

g, =0 when uk>= A, ﬁk = A

k
u, = -A, ﬁk = =A
uk =0, ﬁk = -A
€, = A when
k =4, =0
Yk > Y
u = =-A, 4, =0
&y = -A when { k "
=0 4, = A
Yk s Yy
& = 2A  when uk = A, ﬁk = A
€ = -2A when vy = -A, ﬁk = A (A.7.91)
From this we have
1; € = 0
72, =
c(ek) =05 & = t;
1 = *2A A.7.92
3,€k_— ‘ (")
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where we count the number of distinct values of u, for each €1 and multiply by

q(uk) = %-as in (A.7.74).

The final transfer function has the form

2

o -1 2
T(z) = jz 25 7—‘2 ktl c(ek) exp § - 32{1 - cos 6k+1] (A.7.93)

j=1 D(0,3j) k=0

Note that (A.7.93) can be evaluated using only M/2 states which is even less

than the number of states required for the Viterbi algorithm.
Now we define the branch transfer functions

A 2
a .

cij exp {- 4[1 - cos Aj] ;3 if state Aj can be

: reached from state Ai

0; if not (A.7.94)

where cij is the sum of the numbers c(e) corresponding to all error inputs ¢

that can cause* a transition from state Ai to state Aj. Then defining

= _
Note that in (A.7.87), we see that ¢ = A or € = -A can cause a transition from

Gk =0 to 6k+1 = A1 = A,
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all 621 . . . . . a'M/Z,l -—‘
alz 822 . » . . . aM/2,2
_A_ =
aiM/2 Zom/2 vttt Bm/2M/2 (A.7.95)
— - . -
201 210
402 270
l)_ = 3 E =
Lf‘o,M/Z aM/2,0 (A.7.96)

we may use the simple transfer function of (A.7.61).

For the M = 8 example of Figure A~15 we have

D= {O,Al,Az,A3,A4} (A.7.97)

and the state diagram for the absolute difference process given by (A.7.87) is

illustrated in Figure A-16. Here the branch values are the input errors € of
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(A.7.86). The corresponding transfer function absolute difference state diagram

is. shown in Figure A-17. Here we have the branch transfer functions given by

Y]

_ 4 - 2
agy = 30(8)5 a5, = 32(2,)

_ 4 - 2
23,3 = 30(84), 8,y = 30(2,)

]
]

-4 '

)]
[l

ayq = gu(AB), a(Aé)

44

2 -

35,441 T 30(0yyq)s 1= 1,2,3

a =20(r, ;i =1,2,3,4

i,4-1 = 3%%04-173 <59
a = lu(A ); i =1,2

i,i+2 3 i+27° ’

_1 . i o= .
ai,i—Z = 3a(Ai_2), i 2,3,4 (A.7.98)
where
o2 2
a(h) = z& exp §- —Z{l - cos A] _ (A.7.99)

In arriving at (A.7.98), we have made use of the fact that when two values of
€, can cause the same transition between states, then the branch functions
corresponding to the different values of €, can be added together to form a
single branch function. Thus, for this example, we have from (A.7.44) and
(A.7.96) that '
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Figure A-17. Absolute Difference Transfer Function State Diagram
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aj; Ay ag 0
212 822 832 q
:A_:
413 .83 833 343
0 ay, 83, 3, (A.7.100)
and
- -
a1 210
202 220
P_:. ’E=
0 0
K 0 (A.7.101)

Figure A-18 illustrates the mean square phase error bound, as computed
from (A.5.13) together with (A.7.61), (A.7.100) and (A.7.101) using the maximum
likelihood Viterbi algorithm which in this application is basically a smoothing
algorithm. This is shown for M = 8 as a function of the signal energy-to-noise
ratio ES/NO. For large ES/N0 the remaining error is due to quantization of the

27 interval into M quantized values.
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APPENDIX B

A Factor of One Half in Error Probability Bounds

I. Introduction

In many complex communication systems, error probabilities are often
difficult to evaluate, and thus, easily computed bounds are highly desirable.

Two such bounds are the Chernoff bound and the Bhattacharyya bound (Ref. 1).

For any error probability bound, one desires that it be as tight as
possible. Jacobs (Ref. 2) gave sufficient conditions for reducing the standard
Chernoff bound by a factor of one half. 1In this appendix, we rederive this
result and give less restrictive but harder to verify sufficient conditions.

We also present some related fesults of Hellman and Raviv (Ref. 3) which show

that all Bhattacharyya bounds can be reduced by a factor of one half.

II. Decision Function and Error Probability Models

Let Z be a continuous random variable that can have one of two

probability densities:

: fl(z), -» <z <@

H, : fz(z), -0 <z < © (B.2.1)

where the a priori probabilities for these two hypotheses are denoted by

T, = Pr{Hl} and T, = Pr{Hz} =1~ (B.2.2)

1 1

We assume an arbitrary deterministic decision rule characterized by the following
binary-valued decision function: Given an observed value z of the random

variable Z, then if

$(2) 1, decide H (B.2.3a)

1

and if

¢ (z) 0, decide H (B.2.3b)

2
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In terms of this decision function, we have conditional error probabilities

PEI = Pr {decide Hlel}
i/ﬂ 1 - ¢(z)]f1(z)dz (B.2.4)
and
PE2 = Pr {decide H,[H,}
=f $(2)f,(2)dz ~ (8.2.5)

The average error probability is

P, = 1,P + P

E 1 El 2 E2
=f {’lrlfl(z)[l - ¢(2)] + 1r2f2(z)¢(z)}dz (B.2.6)

In the following, we examine Bhattacharyya and Chernoff bounds for various

decision rules.

III. Maximum A Posteriori (MAP) Decision Rule

The decision rule that minimizes PE is the MAP rule,

1, wlfl(z) 2 nzfz(z)
$(z) =
o, ﬂlfl(z) < wzfz(z) (8.3.1)



]

" which satisfies the inequalities

a
8(2) < psin
|7 5® (B.3.2)
nzfz(z
1 -4¢(2) < mE,(2) (B.3.3)

for any o > 0, B 2 0. These inequalities

to derive the bounds

are typically used in (B.2.4) and (B.2.5)

B

® ﬂzfz(z)
PEl < ) W fl(z)dz

B

- oo
i (ﬂ_i)f £ (1, (P (B.3.4)

and

o [nlfl(z)
E2 = B nzfz(z)

o o

L

-—00

Next define the function

B(a) =f fl(z

o

J fz(z)dz

z)“fz(z)l'“dz (8.3.5)

)“fz(z)l""dz (B.3.6)
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Then from (B.2.6), the average error probability has the upper bound

1-8. Bg(1-8) + 7. % 1 "%B(a) (B.3.7)

Pps 12

=T ™M

for any ¢« 2 0, B > 0. In general we would choose a and 8 to minimize the bounds

of (B.3.4) and (B.3.5). The special case where

a=8=3% (B.3.8)
results in the Bhattacharyya bound
PE

1
< 2 Ty B(EO

=J. Jfl(z)fz(z)dz (B.3.9)

since

1
,/nlwz < > (B.3.10)
In most cases of interest, such as when*

fl(z) = fz(-z) for all z (B.3.11)

|
we have o = 5 minimizing the function B(a).

*When f;(z) and f5(z) are conditional probabilities of a communication channel
model, this is usually the case.



Let us now reexamine the general form for the average error probability

using the MAP decision rule. Note from (B.2.6) and (B.3.1) that

=j min{'n'lfl(Z)’szfz(z)}dz

Pa =f {ﬂlfl(Z)[l - ¢(z)] + 1r2f2(z)¢(z)}dz

(B.3.12)

Following Hellman and Raviv (Ref. 3) we note that for any a > 0, b > 0 and

0 < a £ 1 we have

min{a,b} < aabl—a

This yields the upper bound on the average error probability

a0

Po sf [wlfl(z)]“[wzfz(z)]l‘“dz

_ o l-o
=T T2

B (o)

(B.3.13)

(B.3.14)

Since the minimizing choice of o is in the unit interval [0,1] then this bound

is always a factor of one-half smaller than the bound given in (B.3.7).

In par-

ticular for the Bhattacharyyé bound where a = %3 this bound, due to Hellman and

Raviv, is always a factor of one half smaller, i.e.,
Q00

Py < %f F ()E, (2)dz
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Thus, the commonly used Bhattacharyya bound, particularly in its application to

deriving transfer function bit error probability bounds for convolutional codes,

can be tightened by a factor of one-half.

Iv. Maximum Likelihood (ML) Decision Rule

The ML decision rule, namely,

1, fl(z) > f£,(2)
¢(z) =

0, fl(z) < fz(z) (B.4.1)

tends to keep both conditional probabilities closer in value butlonly minimizes
P when Ty =Ty, = %3 i.e., the equal a priori probability case. In general, we

have inequalities

o
£,(2)
¢(2) < ¥;?ET (B.4.2)
and
B
£,(2)
[1-4¢(2)] < £ () (B.4.3)
resulting in conditional error bounds
PE < B(1-B) (B.4.4)
1
and
PE < B(a) : (B.4.5)
2



" The average error prpbability is simply bounded by

PE < nlB(l - B) + WZB(u) (B.4.6)

While the choice a = B = %—which often minimizes this bound yields the usual

Bhattacharyya bound

P_ < B(& (8.4.7)

since m, + Ty = 1.

Again using the inequality (B.3.13), we can show a tighter bound as follows:
PL =f {Trlfl(z)[l - ¢(2)] + 7r2f2(z)¢(z) }dz

-Q0

o]

< max{wl,WZT[ {fl(z)[l - ¢(2)] + f2(2)¢(2)}d2

0o

= max{vl,nzi[
2}

f fl(z)afz(z)l—adz

00

min{fl(z),fz(z)}dz

1A

max{vl,w

= max{nl,wz}B(a) (B.4.8)

for 0 < o < 1. For the case where



and o = %—we again reduce the bound of (B.4.7) by a factor of one half. Most

cases of interest have equal a priori probabilities.

V. Maximum Metric and Chernoff Bounds

We now assume that Z is some sort of metric used to make the decision such

that for the particular value Z = z, we have the rule:

If z > 0, choose H1

If z < 0, choose H2 (B.5.1)
The decision function is then
1, z>0
$(2) =
0, z<0 (B.5.2)

and conditional errors are

PE =J’ [1- ¢(z)]f1(z)dz

, 0
=J' fl(z)dz (B.5.3)
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and

Py =f ¢>(Z)f2(2)dz

=f £,(z)dz (B.5.4)
0

For oo 2 0 and B > 0 we have the standard Chernoff bounds

0

PEI s[ e *%f, (2)dz 4 € (@) (B.5.5)

and

oo

P s[ eP?f. (2)dz
E, 2

Thus, the average error probability has the upper bound

i

CZ(B) (B.5.6)

PE < wlcl(a) + ﬂZCZ(B) | ’ (B.5.7)

Note that in general if PEl and PEZ are less than 0.5 then the Chernoff bounds
are minimized by nonnegative parameters a and 8. Hence the Chernoff bounds

apply for all real values of o and B.

Jacobs (Ref. 2) considered the conditions

fl(—z) > fl(z) all z € 0 (B.5.8a)



and

f2(—z) 3 f2(z) all z >0 : (B.5.8b)

Then, using the inequality

and appropriate changes of

inequalities:

Cl(a)

cosh w

1 for all w (3.5.9)

v

variables of integratiom, he showed the following

o

=j Ae_vazfl(z)dz

0 ©
=] e_azfl(z)dz +j e-azfl(z)dz
-0 0

pf 0
=j enmzfl(z)dz + eazfl(-z)dz

-0

(=)

o
(=]

00

Zf e—azfl(z)dz + eazfl(z)dz
0 .
= ZJ‘ cosh az fl(z)dz

0
2 2] fl(z)dz (B.5.10)
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or

P s%cl(a) (8.5.11)

Similarly, it can be shown that

1
PE2 £ §-C2(B) (B.5.12)

Thus the often satisfied condition given by Jacobs in (B.5.8) results in a factor

of one half in the usual Chernoff bounds.

Less restrictive but more difficult to prove conditions are that

o 0

- % *
f e zfl(z)dz 3[ e Zfl(z)dz (B.5.13a)
J; )

and

0. ©

& -
f e? %t (2)dz z[ e B*Zfz(z)dz (B.5.13b)
o 0 o

where a* minimizes Cl(a) of (B.5.5) and B* minimizes CZ(B*) of (B.5.6). Note

that, for the special case of a* = 0, we have

et 0
j fl(Z)dz =1 - PE1 z[ fl(z)dz = PEl (B.5.14)
o - :

which is always satisfied when

P < % (B.5.15)
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' Similarly for f* = 0, we would have _,

0 ™
fz(z)dz =] - PE 2 fz(z)dz = PE (B.5.16)
2 2
—00 0
which is always satisfied when
P, <1 (B.5.17)
E2 2

Indeed conditions (B.5.13) are also true for some nonnegative range of a* and
B* values. We assume it is true for the minimizing choices of the Chernoff bound
parameters. Note that conditions (B.5.13) are less restrictive than those of

(B.5.8) since the latter imply the former but not vice versa.

Now consider the inequalities

C,(@) 2 C; (o)

—q*
=J e ¢ zfl(z)dz

. 0 ‘
—a* —qk
=f e & zfl(z)dz +f e & Zfl(z)dz
—00 0

0 0
f e-a*zfl(z)dz +f ea*zfl(z)dz

v

0
= ZI cosh a*z fl(z)dz
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v
—
8 (=]

Hh

-

~~

N

A

¥

N

= 2P
B
or .
P. <Lic (w
g, $7 ¢t
1
Similarly
P < <. (B)
E, 52 “2'%)

(B.5.18)

(B.5.19)

(B.5.20)

Thus, since (B.5.19) and (B.5.20) are identical, respectively, to (B.5.11) and

(B.5.12), we have shown that the less restrictive conditions of (B.5.13) result

in a factor of one-half in the usual Chernoff bounds.

Next for the special case where

and
a* = B%

sufficient conditions can alternately be given by

J. e_a*zfl(z)dz 2Jp e_a*zfz(z)dz
~0 0

B-13
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(B.5.22)

(B.5.23a)



and

0 0
* *
f e zfz(z)dz zf e zfl(z)dz (B.5.23b)

-0 -0

Note that these conditions are always satisfied if our decision rule is a

maximum likelihood decision rule where

fz(z) < fl(z) for all z > 0O (B.5.24a)

and

fz(z) > fl(z) for all z < 0. (B.5.24b)

Assuming conditions (B.5.23) we have

Cy (o) + Cy(B) 2 C (a%) + C,(o)

—a*
=f e ¢ Zfl(z)dz

-—00

*
+f e zfz(z)dz

0 ®
—qk —g*
=[ e & Zfl(z)dz +f e ¢ zfl(z)dz
0 0

0 ©
*
+J’ ea*zfz(z)dz +j e zf2(z)dz
- 0
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0 L
- ok
zj e a*zfl(z)dz +I P zf2(z)dz
—0 0

0 o
*
+J ea*zfl(z)dz +J e 'Zfz(z)dz
0 0

0
=2J

+2f
0

or

1A

which is again a factor of one half

cosh a*z fl(z)dz

cosh a*z f (z)dz

+2p (B.5.25)
E
2

1

e 4+1p

2Fe, T2 T,

Lo +Xc (e (B.5.26)

% ©1 4 ©2 -2

less than the original Chernoff bound on the
1

average error probability (B.5.7) for Ty =T, =5

For the special case where Z happens to be a maximum likelihood metric,

z fl(z)
e or z=1n ?;?;y (B.5.27)



then the conditions (B.5.23) hold whereupon

C1 () =J e_Osz1 (z)dz

o

“Is (z)
= f ( 3 f (z)dz
=f £, (2)

= B(l - a)

and

C,(8)

f eBzfz(z)dz
f (z)
f () f (z)dz

=f £, (z)sz(z)l_de

= B(B)
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VI. Applications

X% ex¥

show a reduction by a factor of one half in the bound of (B.4.6).

where B(+) is defined in (B.3.6). Recall that B(%) is the Bhattacharyya bound.
Thus, (B.5.28) and (B.5.29) together with (B.2.6), (B.5.19), and (B.5.20) again

In most applications of interest, we consider two sequences of length N,

that can be transmitted over a memoryless channel with input alphabet X and

output alphabet ¥ and conditional probability

P(y|x); xeX,ye¥

This is shown in the following figure.

. Memoryless
X xe X yeVY
=1 Channel |
or
p(y|x)
)
N

n=1

Figure B-1. A Simple Example - One of Two Sequences
Transmitted over a Memoryless Channel

The receiver obtains a sequence

z.ek’N

“B-17

| Py (x[%y) =ﬂp(yin|xin); i=12

<
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" from the channel and must decide between the two hypotheses
is sent

18 X

9t Xy is sent (B.6.2)

which have a priori probabilities given by (B.2.2). The receiver will typically

use a metric
m(y,x); xeX,ye¥

and the corresponding decision rule where, if and only if

N N
Z m(yﬁsxln) 2 zm(yn,xzn) ’ (B.6.3)
n=1 . n=1

do we choose H,. By defining the random variable

N
Z= z [m(yn’xln) - m(yn’xzn)] (B.6-4)
n=1 .

we have the basic problem considered in previous sections,

For M sequences of length N denoted Xx,, X,, cees Xy we have the decision

rule: Given szN choose the sequence Xz that has the largest total metric

N
z m(yn,xﬁm)
n=1

N ;
for Xs = (xﬁl’xﬁz’ ""xﬁN) eX . (B.6.5)
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The union bound for each conditional error probability is,

PEm = Pr{errorlgm} < zz Pr{decide Eﬁlzm}; m=1,2, ..., M, (B.6.6)
m#m

Here we have
Pr{deciding 1(1;1|§m} < P(x %) (B.6.7)

where P(gmfgﬁ) is the probability of deciding x» when x 1is sent assuming X and

X, are the only two possible sequences. That is,

N .
P(x »x-) = Pr z [m(y %z ) - mly »x )] 2 Olgcm (B.6.8)

n=1

which is the two hypothesis error probability. Thus, in this case, we can apply

our two hypothesis results discussed earlier.
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